令和8年度

(令和8年4月入学) (令和8年10月入学)

北海道大学大学院生命科学院 生命科学専攻 ソフトマター専攻 博士後期課程

冬期募集

学生募集要項

(社会人・外国人留学生特別選抜を含む)

令和7年11月

目 次

生命	科	学院 アドミッション・ポリシー	1
I	_	般選抜	
1	. •	募集人員	2
2	2.	出願資格	2
3	3.	出願資格予備審査 ·······	2
4	Į.,	願書受理期間	3
5	·	出願書類	3
6	.	願書提出先	4
7		検定料	5
8	3.	選抜方法	5
9).	試験日時・会場	5
10	0.	合格発表	5
1.	1.	入学手続及び必要経費	5
12	2.	注意事項	5
13	3.		6
14			6
Π	社	会人特別選抜	
1	. •	募集人員	7
2	2.	出願資格 ····································	7
3	3.		7
			8
			8
6			[0
Ш		国人留学生特別選抜	
1	. •	募集人員	1
2	2.	出願資格	1
3	3.	出願資格予備審査 ····· 1	1
			12
5			12
			13
			4
			14
			14
			4
			4
			15
			16
研究	计百	導担当分野等及び研究内容一覧表 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17
Гы	- 	田処然のしいにはなっ	
LM		用紙等のとじ込み] - 入学願書・履歴書・受験票・写真票	
	1	八子順書・復歴書・受験票・与具票 入学後の研究計画書	
		八字後の研究計画者 合否通知用及び連絡用シール	
	4	受験票送付用封筒(480円分の切手を貼付すること)	
	5	支続宗医的用封同(400 円分の男子を貼りすること) 志望担当教員調査票	
	6	心主 ¹² 三教員剛直宗 検定料振込用紙	
	7	履歴書B(外国の学校教育課程出身者用)	
	·		

個人情報の取扱いについて

- (1) 本学では、個人情報の取扱いについては、「独立行政法人等の保有する個人情報の保護に関する法律」等の法令を遵守するとともに、「国立大学法人北海道大学個人情報管理規程」に基づき、 保護に万全を期しています。
- (2) 出願及び出願資格予備審査に当たってお知らせいただいた氏名、住所その他の個人情報については、①入学者選抜(出願処理、選考実施)、②合格発表、③入学手続き、④入学者選抜方法等における調査・研究、及び⑤これらに付随する業務を行うために利用します。
- (3) 各種業務での利用に当たっては、一部の業務を本学から当該業務の委託を受けた業者(以下「受託業者」という。) において行うことがあります。業務委託に当たり、受託業者に対して、委託した業務を遂行するために必要となる限度で、お知らせいただいた個人情報の全部又は一部が提供されます。
- (4) 出願及び出願資格予備審査に当たってお知らせいただいた個人情報は、合格者についてのみ、 入学後の①教務関係(学籍、修学指導等)、②学生支援関係(健康管理、奨学金申請等)、③就職 支援関係、④授業料等に関する業務を行うために利用します。
- (5) (4) の個人情報のうち、氏名、住所等の連絡先に限って、安全確保の措置を講じた上で、北大フロンティア基金、本学関連団体である北海道大学理学部同窓会及び北海道大学薬学部同窓会並びに北海道大学校友会エルムからの連絡を行うために利用する場合があります。
- (6) EU 一般データ保護規則(GDPR)に基づく個人情報の取扱いについては、対象者に別途お知らせします。当該規則の適用となる者(欧州経済領域(EEA)加盟国内から出願する者)は出願前に理学・生命科学事務部事務課大学院教育担当に申し出てください。

【外国籍の出願者への留意事項】

外国人留学生として在籍するには、在留資格「留学」を取得する必要がありますが、「在留資格認 定証明書」は、安全保証輸出管理の審査や出入国管理局の手続きにより申請から発行までに3ヶ月以 上かかる場合もあります。

また、希望する研究内容が安全保障輸出管理規程の規制事項に該当する場合は、制限がかかる場合がありますのでご留意願います。

《参考 北海道大学 査証 (ビザ)の申請と取得手続きについて》

日本語版:https://intl-student-handbook.oia.hokudai.ac.jp/preparation/visa

英語版:https://intl-student-handbook.oia.hokudai.ac.jp/en/preparation-en/visa-en

《参考 経済産業省 安全保障貿易管理》https://www.meti.go.jp/policy/anpo/

生命科学院 アドミッション・ポリシー

生命科学院では、分子レベルから個体レベルにわたる高度な生命科学の知識を統一的に学ぶことができる大学院教育を提供する。このために、理学・薬学・医学・農学の領域において基礎生命科学から応用生命科学を専門とする広い分野の教員が参加することにより、基礎から応用展開までの包括的な教育を行う。

・求める学生像

<生命科学専攻>

ゲノミクス・プロテオミクスを基盤に、生体分子の相互作用から種々の生命現象を包括的に理解し、 さらにはそれらの応用についても思考できる人材を育成することを教育の目的としている。この理念と 目標の実現に向けて次の資質と能力を持つ学生を求める。

分子生物学や細胞生物学といった生命体の基礎構造や基本機能の解析に関わる分野、生理学や発生生物学といったより高次の生命機能の解析に関わる分野、さらには個体の生体分子の構造と機能や、それらの機能の統合として存在する各種生命現象の共通原理と多様性を理解し、優れた考察力と解析能力を持ち、当該分野で独創性の高い研究を遂行しようとする意思を持つ学生

<ソフトマター専攻>

物質科学と広範な生命科学との融合研究によるソフトマター科学の発展、さらに生命体の構造と機能を物質科学の視点で理解し、それを活かした先端ソフトマターのデザインと創成、及び応用展開力が期待できる学生を求める。

ソフトマターの微視から巨視までの階層構造の解析、それに伴うダイナミックな創発機能の原理解明、それを活かした先端ソフトマターのデザインと創成など、優れた考察力と解析能力を持ち、独創性の高い研究を遂行しようとする意思を持つ学生

・入学前に学習しておくことが期待される内容

- 1. 生命科学に関する基礎学力を有すること。
- 2. 大学院において専門的な学術研究に従事していくため、各専門分野における基盤的な素養を修得していること。

・ 入学者選抜の基本方針 (多角的な評価方法)

【一般選抜】

ロ頭試問により、「知識・技能」、「思考力・判断力・表現力」、「主体性・協働性」、「理解力」、「関心・意欲」、「課題発見力」、「課題解決力」の評価を特に重視して行う。併せて、入学後の研究計画書、成績証明書等出願書類により、これらの資質を補完して、入学者を総合的に評価して選抜する。

【社会人特別選抜】

ロ頭試問により、「知識・技能」、「思考力・判断力・表現力」、「主体性・協働性」、「理解力」、「関心・意欲」、「課題発見力」、「課題解決力」の評価を特に重視して行う。併せて、入学後の研究計画書、成績証明書等出願書類により、これらの資質を補完して、入学者を総合的に評価して選抜する。

【外国人留学生特別選抜】

口頭試問等により、「知識・技能」、「思考力・判断力・表現力」、「主体性・協働性」、「理解力」、「関心・ 意欲」、「課題発見力」、「課題解決力」を特に重視して評価を行う。併せて、入学後の研究計画書、成績証 明書等出願書類により、これらの資質を補完して、入学者を総合的に評価して選抜する。

入学者選抜の基本方針(評価方法の比重)

【博士後期課程】

入試区分	評価方法等	知識・技能	思考力・判断力・ 表現力	主体性を持って 多様な人々と 協働して学ぶ態度	理解力	関心·意欲	課題発見力	課題解決力		
	口頭試問	0	0	0	0	0	0	0		
一般選抜	入学後の研究計画書、 成績証明書等出願書類	総合的に判断する要素								
社会人	口頭試問	0	0	0	0	0	0	0		
特別選抜	入学後の研究計画書、 成績証明書等出願書類			総合的に判断	する要素					
外国人留学生	口頭試問等 ※1	0	0	0	0	0	0	0		
か国人由子王 特別選抜	入学後の研究計画書、 成績証明書等出願書類			総合的に判断	する要素			•		

※1:Web 会議システム等により試問を行う。

(注)◎は特に重視する要素を、○は重視する要素を指す。

I 一般選抜

1. 募集人員

(募集人員は、各専攻・各コースとも社会人特別選抜及び外国人留学生特別選抜による募集人員若干名を含む。)

** - 2	募集人員			
専攻・コース	(令和8年4月入学)	(令和8年10月入学)		
生命科学専攻	生命科学専攻			
生命融合科学コース	15 名程度			
生命システム科学コース				
生命医薬科学コース				
ソフトマター専攻	若干名			

2. 出願資格

- A 修士の学位又は専門職学位(学校教育法第104条第3項の規定に基づき学位規則(昭和28年文部省令第9号)第5条の2に規定する専門職学位をいう。以下同じ。)を有する者(大学院入学の前までに学位を授与される見込みの者を含む。)
- B 外国の大学において、修士の学位又は専門職学位に相当する学位を授与された者(大学院入学の前までに学位を授与される見込みの者を含む。)
- C 外国の学校が行う通信教育における授業科目を我が国において履修し、修士の学位又は専門職学位に相当する学位を授与された者(大学院入学の前までに学位を授与される見込みの者を含む。)
- D 我が国において、外国の大学院の課程を有するものとして当該外国の学校教育制度において位置付けられた教育施設であって、文部科学大臣が別に指定するものの当該課程を修了し、修士の学位又は専門職学位に相当する学位を授与された者(大学院入学の前までに学位を授与される見込みの者を含す。)
- E 国際連合大学本部に関する国際連合と日本国との間の協定の実施に伴う特別措置法(昭和51年法律第72号)第1条第2項に規定する1972年12月11日の国際連合総会決議に基づき設立された国際連合大学の課程を修了し、修士の学位に相当する学位を授与された者(大学院入学の前までに学位を授与される見込みの者を含む。)
- F 外国の学校、Dの指定を受けた教育施設又は国際連合大学の教育課程を履修し、大学院設置基準第 16条の2に規定する試験及び審査に相当するものに合格し、修士の学位を有する者と同等以上の学力 があると認められた者 (大学院入学の前までに学位を授与される見込みの者を含む。)
- G 文部科学大臣の指定した者(平成元年文部省告示第118号)
- ① 大学を卒業し、大学、研究所等において、2年以上研究に従事した者で、本学院において、当該研究の成果等により、修士の学位を有する者と同等以上の学力があると認めた者
- ② 外国において学校教育における16年の課程を修了した後、又は外国の学校が行う通信教育における授業科目を我が国において履修することにより当該外国の学校教育における16年の課程を修了した後、大学、研究所等において、2年以上研究に従事した者で、本学院において、当該研究の成果等により、修士の学位を有する者と同等以上の学力があると認めた者
- H 本学院において、個別の入学資格審査により、修士の学位又は専門職学位を有する者と同等以上の 学力があると認めた者で、大学院入学の前までに24歳に達するもの
 - * 上記出願資格を有する者で、令和8年 10 月入学を希望する者は、15 頁の「北海道大学大学院生 命科学院 10 月入学者選抜試験実施要項」を参照のうえ、入学願書の所定欄に「レ」を記入すること。

3. 出願資格予備審査

申請期間: 令和7年11月14日(金) ~ 令和7年11月17日(月)

「2. 出願資格」のG又はHのいずれかに該当する者は、願書を受理する前に出願資格に関する予備

審査を行うので、この期間内に「5. 出願書類」に志願者の宛先を明記し 110 円切手を貼付した出願資格予備審査結果通知用封筒(定形)を添えて願い出ること。

なお、<u>予備出願資格予備審査申請に当たっては検定料を納付してはいけない。</u>検定料は下記(注)により納付すること。

(申請はこの期間に郵送により必着のこと。)

(注) 出願資格予備審査の結果については、令和7年12月2日(火)頃に通知を発送するので、出願資格を認められた場合、令和7年12月11日(木)までに、「7. 検定料」を別添の振込用紙を用いて、銀行、ゆうちょ銀行・郵便局から納付し、その受付証明書を提出すること。受付証明書を所定の期間内に提出しない場合は、願書を受理しない。

ただし、国費外国人留学生、中国政府国家公派研究生項目派遣学生は、検定料の納付を要しない。

4. 願書受理期間

受理期間: 令和7年12月5日(金) ~ 令和7年12月11日(木)

(願書はこの期間内に郵送により必着のこと。)

「2. 出願資格」のA~Fによる志願者

この期間内に「5. 出願書類」に検定料の受付証明書を添えて出願すること。

(ただし、本学大学院(他研究科・他学院を含む。)の修士課程を修了見込みの者及び出願時において国費外国人留学生、中国政府国家公派研究生項目派遣学生は、検定料の納付を要しない。)

※ 検定料の詳細については、「7. 検定料」を参照すること。

「2. 出願資格」のG及びHによる志願者

「3. 出願資格予備審査」を参照すること。

5. 出願書類

- * 「2. 出願資格」のG及びHのいずれかに該当する者は、「3. 出願資格予備審査」申請期間内に 提出すること。
- * ○は必ず提出する書類、△は該当者のみ提出する書類

提出書類		出願資格		
		A B C D E F	GΗ	備 考
1	入学願書・履歴書・ 受験票・写真票	0	0	「所定用紙」外国の学校教育課程出身者及び外国の学校が行う通信教育履修者は、「履歴書B」(所定用紙)を添付すること。
2	入学後の研究計画書	0	0	〔所定様式〕 様式は、ホームページからダウンロードも可能。
3	研究歷証明書		0	〔様式任意〕 研究題目・研究期間に関する大学・研究所・企業の開発研究部門等の長又は研究 指導者の証明書
4	最終出身大学院等の 学業成績証明書	0	0	本学院出身者は提出不要 ※原本が日本語又は英語以外の言語で書かれている場合は、「当該言語で書かれ た証明書の原本」と「公的な和訳又は英訳の原本」の両方を添付すること。

	提出書類		資格	
			GH	備 考
5	最終出身大学院等の 修了(見込)証明書 又は学位授与証明書	0	0	①出身大学院等の長が作成したもの。 (既修了の場合、学位情報が記載されていることを確認してください。) ②中華人民共和国(台湾、香港、マカオを除く)の大学院を修了、または修了見込みの者は、修了(見込)証明書に加えて、英語による以下の書類を提出してください。 既修了者 …a 学歴証書電子登録票(Online Verification Report of Higher Education Qualification Certificate) 修了見込者…a オンライン在籍認証レポート(Online Verification Report of Student Record) 上記のうち、書類aは中華人民共和国教育部認証システム(中国高等教育学历证书查询http://www.chsi.com.cn/xlcx/bgys.jsp)より取得してください。また、提出時点でWeb 認証の有効期限が15日以上残っていることを確認してください。 ②本学院出身者は提出不要 ③出願資格Fによる志願者は基礎力審査に相当する審査の確認書を提出すること。 ※原本が日本語又は英語以外の言語で書かれている場合は、「当該言語で書かれた証明書の原本」と「公的な和訳又は英訳の原本」の両方を添付すること。
6	修士課程における研 究内容の要旨	Δ		<生命医薬科学コース志願者のみ> 修士課程修了見込みの者のみ提出すること。(A4判用紙3枚程度)
7	現在までの研究内容の要旨	Δ		<生命医薬科学コース志願者のみ> 修士の学位を有する者のみ提出すること。(予め志望担当教員に確認すること。)
8	志望担当教員調査票	0	0	〔所定様式〕 本調査票記入前に、志望担当教員と必ずコンタクトを取ること。 様式は、ホームページからダウンロードも可能。
9	研究業績目録、主た る研究論文(写)	Δ	Δ	〔様式任意〕 研究業績等がある場合は任意で提出することができる。
10	受験票送付用封筒	0	0	[所定封筒] 封筒には、志願者の郵便番号、住所及び氏名を明記し、480円分の切手を貼付し て提出すること。出願後に転居等で宛先を変更する場合は、必ず本学理学・生命 科学事務部事務課大学院教育担当に連絡すること。
11	合否通知用及び連絡 用シール	0	0	〔所定用紙〕 シールには、志願者の郵便番号、住所及び氏名を明記して提出すること。 出願後に転居等で宛先を変更する場合は、必ず本学理学・生命科学事務部事務課 大学院教育担当に連絡すること。
12	出願資格予備審査 結果通知用封筒		0	定形郵便用封筒に、志願者の郵便番号、住所及び氏名を明記し、110 円分の切手 を貼付すること。

6. 願書提出先

〒060-0810 札幌市北区北 10 条西 8 丁目 北海道大学理学・生命科学事務部事務課大学院教育担当

* <u>願書は郵送により提出すること。</u>また、必ず**「速達」の書留郵便**とし、**「大学院入学願書在中」と 朱書**すること。募集要項のとじ込みにある「受験票送付用封筒」ではなく、別途用意した封筒で郵 送すること。

7. 検定料 30,000円

- ① 本学大学院(他研究科・他学院を含む。)の修士課程を修了見込みの者及び出願時において国費外国人留学生、中国政府国家公派研究生項目派遣学生は、検定料の納付を要しない。
 - ※ 北海道大学以外からの推薦による国費外国人留学生採用者は、採用(予定)通知書の写を提出すること。
- ② 検定料は、「生命科学院所定用紙等のとじ込み」にある「検定料振込用紙」を用いて、銀行、ゆうちょ銀行・郵便局から納付し、「検定料受付証明書」(E)を入学願書の所定の欄に貼付して提出すること。
- ③ 既納の検定料は、以下の場合を除き返還しない。
 - ・検定料を払い込んだが出願しなかった場合又は出願が受理されなかった場合
 - ・検定料を誤って二重に払い込んだ場合

8. 選抜方法

口頭試問の成績及び出願書類の内容を総合して合格者を決定する。

- ※ ロ頭試問の出題範囲は出願時に提出された研究計画書及び任意提出の研究業績目録及び主たる 研究論文とする。
- ※ なお、生命科学専攻(生命システム科学コース)の口頭試問は、オンライン形式で実施する。

9. 試験日時・会場

日 時:令和8年1月8日(木) 又は 1月9日(金)

試験会場:北海道大学理学部・薬学部(札幌市北区)※オンライン形式を除く

- * 試験時間、試験室及びオンラインによる口頭試問方法等の詳細については別途通知する。
- * 生命科学専攻(生命融合科学コース)及びソフトマター専攻は、令和8年1月5日(月)~1月9日(金)の期間に口頭試問を実施する。試験会場等の詳細については、受験票発送時期に該当専攻・コースから別途通知する。
- * 各専攻及び各コース間の併願はできない。

10. 合格発表

合格者については、令和8年1月22日(木)16:30頃に本学院ホームページに受験番号を掲示するとともに、合格者のみに通知する。

11. 入学手続及び必要経費

入学手続きについては、合格通知の際に併せて連絡する。

入学料 282,000 円 (予定額)

* 本学大学院の修士(博士前期)課程から引き続き博士後期課程に進学する者は不要

授業料 267,900 円 [年額535,800 円のうちの前期分] (予定額)

* 在学中に授業料の改定が行われた場合には、改定時から新授業料が適用される。

12. 注意事項

- ① 入学試験当日は、受験票を必ず持参すること。
- ② 出願書類等に虚偽の記載が発見された場合は、入学許可を取り消すことがあります。
- ③ 病気・負傷や障がい等のために受験上特別な配慮を必要とする場合は、出願までに理学・生命科学事務部事務課大学院教育担当へ申し出てください。※修学上希望する配慮事項がある場合も併せてご相談ください。

《参考》北海道大学入学案内 合理的配慮の提供に関する情報

https://www.hokudai.ac.jp/admission/gouriteki-hairyo.html

13. 長期履修について

本学院では長期履修制度を設けているので、長期履修を希望する者は16頁の「長期履修について(案内)」を熟読のうえ、申請すること。

14. その他

願書が受理された者には、令和7年12月19日(金)頃に受験票を発送する。

◎出願に関して不明な点等があれば、下記まで連絡すること。

〒060-0810 札幌市北区北10条西8丁目

北海道大学理学·生命科学事務部事務課 大学院教育担当 (窓口受付時間 平日8:30~12:15,13:00~17:00)

Tel (011) 706-3675 Email: r-gakuin@sci.hokudai.ac.jp

北海道大学大学院生命科学院

ホームページ https://www.lfsci.hokudai.ac.jp

Ⅱ 社会人特別選抜

1. 募集人員

専攻・コース	募集人員			
等以・コー 人	(令和8年4月入学)	(令和8年10月入学)		
生命科学専攻				
生命融合科学コース	若干名			
生命システム科学コース				
生命医薬科学コース				
ソフトマター専攻	若干名			

2. 出願資格

次の各号の一に該当する者で、出願時において各種研究機関、教育機関、企業等に勤務している研究者・技術者等で、入学後も引き続きその身分を有する者

- A 修士の学位又は専門職学位(学校教育法第104条第3項の規定に基づき学位規則(昭和28年文部省令第9号)第5条の2に規定する専門職学位をいう。以下同じ。)を有する者
- B 外国の大学において、修士の学位又は専門職学位に相当する学位を授与された者
- C 外国の学校が行う通信教育における授業科目を我が国において履修し、修士の学位又は専門職学位 に相当する学位を授与された者
- D 我が国において、外国の大学院の課程を有するものとして当該外国の学校教育制度において位置付けられた教育施設であって、文部科学大臣が別に指定するものの当該課程を修了し、修士の学位又は専門職学位に相当する学位を授与された者
- E 国際連合大学本部に関する国際連合と日本国との間の協定の実施に伴う特別措置法(昭和51年法律 第72号) 第1条第2項に規定する1972年12月11日の国際連合総会決議に基づき設立された国際連合大学の課程を修了し、修士の学位に相当する学位を授与された者
- F 外国の学校、Dの指定を受けた教育施設又は国際連合大学の教育課程を履修し、大学院設置基準第 16条の2に規定する試験及び審査に相当するものに合格し、修士の学位を有する者と同等以上の学力 があると認められた者 (大学院入学の前までに学位を授与される見込みの者を含む。)
- G 文部科学大臣の指定した者(平成元年文部省告示第118号)
 - ① 大学を卒業し、大学、研究所等において、2年以上研究に従事した者で、本学院において、当該研究の成果等により、修士の学位を有する者と同等以上の学力があると認めた者
 - ② 外国において学校教育における16年の課程を修了した後、又は外国の学校が行う通信教育における授業科目を我が国において履修することにより当該外国の学校教育における16年の課程を修了した後、大学、研究所等において、2年以上研究に従事した者で、本学院において、当該研究の成果等により、修士の学位を有する者と同等以上の学力があると認めた者
- H 本学院において、個別の入学資格審査により、修士の学位又は専門職学位を有する者と同等以上の 学力があると認めた者で、大学院入学の前までに24歳に達するもの
 - * 上記出願資格を有する者で、令和8年10月入学を希望する者は、15頁の「北海道大学大学院生 命科学院10月入学者選抜試験実施要項」を参照のうえ、入学願書の所定欄に「レ」を記入すること。

3. 出願資格予備審査

申請期間: 令和7年11月14日(金) ~ 令和7年11月17日(月)

「2. 出願資格」のG又はHのいずれかに該当する者は、願書を受理する前に出願資格に関する予備審査を行うので、この期間内に「5. 出願書類」に志願者の宛先を明記し 110 円切手を貼付した出願資格予備審査結果通知用封筒(定形)を添えて願い出ること。

なお、<u>予備出願資格予備審査申請に当たっては検定料を納付してはいけない。</u>検定料は下記(注)により納付すること。

(願書はこの期間内に郵送により必着のこと。)

(注) 出願資格予備審査の結果については、令和7年12月2日(火)頃に通知を発送するので、出願資格を認められた場合、令和7年12月11日(木)までに、「7. 検定料」を別添の振込用紙を用いて、銀行、ゆうちょ銀行・郵便局から納付し、その受付証明書を提出すること。期間内に提出がない場合は、出願の意思がないものと判断し、出願書類は受理しない。

ただし、国費外国人留学生、中国政府国家公派研究生項目派遣学は、検定料の納付を要しない。

4. 願書受理期間

受理期間: 令和7年12月5日(金) ~ 令和7年12月11日(木)

(願書はこの期間に郵送により必着のこと。)

「2. 出願資格」のA~Fによる志願者

この期間内に「5. 出願書類」に検定料の受付証明書を添えて出願すること。 (ただし、国費外国人留学生、中国政府国家公派研究生項目派遣学生は、検定料の納付を要しない。) ※ 検定料の詳細については、「7. 検定料」を参照すること。

「2. 出願資格」のG及びHによる志願者

「3. 出願資格予備審査」を参照すること。

5. 出願書類

- * 「2. 出願資格」のG及びHのいずれかに該当する者は、「3. 出願資格予備審査」申請期間内に 提出すること。
- * ○は必ず提出する書類、△は該当者のみ提出する書類

			資格	
提出書類		A B C D E F	GН	備 考
1	入学願書・履歴書・ 受験票・写真票	0	0	〔所定用紙〕 外国の学校教育課程出身者及び外国の学校が行う通信教育履修者は、「 履歴書 B」 (所定用紙)を添付すること。
2	勤務先の人事等の権 限を有する者の在職 証明書	0	0	[様式任意] 合格者は入学手続き時に勤務先の人事等の権限を有する者が発行する「在職のまま入学することの承諾書(様式任意)」を提出することになるので、事前に勤務 先に承諾を得ておくこと。
3	入学後の研究計画書	0	0	〔所定様式〕 様式は、ホームページからダウンロードも可能。
4	研究歷証明書		0	[様式任意] 研究題目・研究期間に関する大学・研究所・企業の開発研究部門等の長又は研究 指導者の証明書
5	最終出身大学院等の 学業成績証明書	0	0	本学院出身者は提出不要 ※原本が日本語又は英語以外の言語で書かれている場合は、「当該言語で書かれ た証明書の原本」と「公的な和訳又は英訳の原本」の両方を添付すること。

		出願	資格	
	提出書類		GН	備 考
				①出身大学院等の長が作成したもの。 (既修了の場合、学位情報が記載されていることを確認してください。)
				◎中華人民共和国(台湾、香港、マカオを除く)の大学院等を修了、または修了 見込みの者は、修了(見込)証明書に加えて、英語による以下の書類を提出して ください。
	最終出身大学院等の	(既修了者 …a 学歴証書電子登録票 (Online Verification Report of Higher Education Qualification Certificate) 修了見込者…a オンライン在籍認証レポート (Online Verification Report of Student Record)
6	修了(見込)証明書 又は学位授与証明書	O	0	上記のうち、書類aは中華人民共和国教育部認証システム(中国高等教育学历证 书査询http://www.chsi.com.cn/xlcx/bgys.jsp)より取得してください。 また、提出時点でWeb 認証の有効期限が15日以上残っていることを確認してく ださい。
				②本学院出身者は提出不要 ③出願資格Fによる志願者は基礎力審査に相当する審査の確認書を提出すること。
				※原本が日本語又は英語以外の言語で書かれている場合は、「当該言語で書かれ た証明書の原本」と「公的な和訳又は英訳の原本」の両方を添付すること。
7	修士課程における研 究内容の要旨	\triangle		<生命医薬科学コース志願者のみ> 修士課程修了見込みの者のみ提出すること。(A4判用紙3枚程度)
8	現在までの研究内容の要旨	Δ		<生命医薬科学コース志願者のみ> 修士の学位を有する者のみ提出すること。(予め志望担当教員に確認すること。)
9	志望担当教員調査票	0	0	〔所定様式〕 本調査票記入前に、志望担当教員と必ずコンタクトを取ること。 様式は、ホームページからダウンロードも可能。
10	研究業績目録、主たる研究論文(写)	Δ	Δ	〔様式任意〕 研究業績等がある場合は任意で提出することができる。
11	勤務先の人事等の権限を有する者、又は大学・研究所等の研究指導者の推薦書	Δ	Δ	〔様式任意〕 任意で提出することができる。
12	受験票送付用封筒	0	0	[所定封筒] 封筒には、志願者の郵便番号、住所及び氏名を明記し、480 円分の切手を貼付し て提出すること。出願後に転居等で宛先を変更する場合は、必ず本学理学・生命 科学事務部事務課大学院教育担当に連絡すること。
13	合否通知用及び連絡用シール	0	0	〔所定用紙〕 シールには、志願者の郵便番号、住所及び氏名を明記して提出すること。 出願後に転居等で宛先を変更する場合は、必ず本学理学・生命科学事務部事務課 大学院教育担当に連絡すること。
14	出願資格予備審査 結果通知用封筒		0	定形郵便用封筒に、志願者の郵便番号、住所及び氏名を明記し、110 円分の切手 を貼付すること。

以下6.~14. については、一般選抜の募集と同様である。

6. 願書提出先、7. 検定料、8. 選抜方法、9. 試験日時・会場、10. 合格発表、11. 入学手続及び必要経費、12. 注意事項、13. 長期履修について、14. その他

◎出願に関して不明な点等があれば、下記まで連絡すること。

〒060-0810 札幌市北区北10条西8丁目

北海道大学理学·生命科学事務部事務課 大学院教育担当 (窓口受付時間 平日8:30~12:15,13:00~17:00)

Tel (011) 706-3675 Email: r-gakuin@sci.hokudai.ac.jp

北海道大学大学院生命科学院

ホームページ https://www.lfsci.hokudai.ac.jp

Ⅲ 外国人留学生特別選抜

1. 募集人員

専攻・コース	募集人員			
す以・コー ス	(令和8年4月入学)	(令和8年10月入学)		
生命科学専攻				
生命融合科学コース	若干名			
生命システム科学コース	41141			
生命医薬科学コース				
ソフトマター専攻	若干名			

2. 出願資格

入学試験を受験するために来日することが困難な外国人で、かつ、入学後に主任として研究指導担当を希望する本学院担当専任教員(以下「受入教員」という。)の推薦書により能力・学力があると保証された者で、次のいずれかの出願資格を有する者

- A 外国の大学において、修士の学位又は専門職学位に相当する学位を授与された者(大学院入学の前までに学位を授与される見込みの者を含む。)
- B 国際連合大学本部に関する国際連合と日本国との間の協定の実施に伴う特別措置法(昭和51年法律第72号)第1条第2項に規定する1972年12月11日の国際連合総会決議に基づき設立された国際連合大学の課程を修了し、修士の学位に相当する学位を授与された者(大学院入学の前までに学位を授与される見込みの者を含む。)
- C 外国の学校又は国際連合大学の教育課程を履修し、大学院設置基準第16条の2に規定する試験及び審査に相当するものに合格し、修士の学位を有する者と同等以上の学力があると認められた者(大学院入学の前までに学位を授与される見込みの者を含む。)
- D 文部科学大臣の指定した者(平成元年文部省告示第118号) 外国において学校教育における16年の課程を修了した後、大学、研究所等において、2年以上研究 に従事した者で、本学院において、当該研究の成果等により、修士の学位を有する者と同等以上の学 力があると認めた者
- E 本学院において、個別の入学資格審査により、修士の学位又は専門職学位を有する者と同等以上の 学力があると認めた者で、大学院入学の前までに24歳に達するもの
 - ※ 事前に受入教員と必ずコンタクトをとり、受入内諾が得られた場合はインターネット出願に必要となるパスワードを受領すること。

また、受入教員に推薦書(様式任意)を作成してもらい、出願期間中に直接、大学院教育担当へ提出してもらうように依頼すること。

※ 令和8年10月入学を希望する者は、15頁の「北海道大学大学院生命科学院10月入学者選抜試験実施要項」を参照のうえ、インターネット出願登録画面で「令和8年10月入学」を選択すること。

3. 出願資格予備審査

申請期間:令和7年11月14日(金) ~ 令和7年11月17日(月)午後5時(日本時間)

「出願資格」のD及びEによる志願者については、正式な出願手続きの前に出願資格に関する予備審査を行うので、この期間内に「6. 出願書類」をPDFファイルでE-mailに添付して送付すること。 出願資格予備審査書類に虚偽の記載等があった場合は、出願資格を取り消すことがある。

【送付先 E-mail アドレス:r-gakuin@sci.hokudai.ac.jp】

なお、出願資格予備審査申請にあたっては検定料を納付してはいけない。

出願資格予備審査の結果は、令和7年12月2日(火)頃に本人あてメールで通知するので、出願資格が認められた者は、速やかに「4. 出願期間」内に「5. 出願手続・検定料の支払い」を行うこと。

(ただし、国費外国人留学生、中国政府国家公派研究生項目派遣学生は、検定料の納付を要しない。)

4. 出願期間

◆ インターネットでの登録: 令和7年11月28日(金) ~ 令和7年12月4日(木)

午後5時(日本時間)

* インターネット登録後、願書書類を PDF にして 12 月 4 日(木) までにメール送信すること。

【送付先 E-mail アドレス:r-gakuin@sci.hokudai.ac.jp】

- ◆ 出願書類の提出期限:令和7年12月11日(木)午後5時(日本時間)まで
 - * インターネットでの登録後、PDFのメール送信とは別に出願書類を提出(郵送)すること。
 - 「2. 出願資格」のA、B、Cによる志願者

上記出願期間に「5. 出願手続・検定料の支払い」を参照のうえ手続きを行うこと。

「2. 出願資格」のD及びEによる志願者

先に「3. 出願資格予備審査」へ申請し、出願資格が認められた後、上記出願期間に「5. 出願手続・検定料の支払い」を行うこと。

5. 出願手続・検定料の支払い

出願手続きは、以下①~③のすべてが出願期間までに完了(到着)していることが確認されたものの み受理する。

① インターネットでの出願登録

事前に受入教員から取得したパスワードにより北海道大学インターネット出願サイト (https://e-apply.jp/e/hokudai-lsci/) にアクセスし、登録すること。

- 注) インターネット出願には「プリンター」と「メールアドレス (携帯電話のメールは不可。)」 が必要なので注意すること。
- ② 検定料の支払い

インターネット出願後に表示される画面に従い、Ⅰ~Ⅲのいずれかの方法で支払うこと。

検定料 30,000円

I : クレジットカードによる支払い

II: Pay-easy (銀行 ATM、ゆうちょ銀行 ATM、ネットバンキング)、コンビニエンスストア、PayPay 銀行、楽天銀行による支払い

Ⅲ: 中国銀聯ネット決済 (ChinaPay) による支払い

- ※ 検定料に加え、別途事務手数料(500円程度)がかかるので注意すること。
- ※ 出願時において国費外国人留学生、中国政府国家公派研究生項目派遣学生は、検定料の納付を 要しない。
- ※ 既納の検定料は、以下の場合を除き返還しない。
 - ・検定料を支払ったが出願しなかった場合又は出願が受理されなかった場合
 - ・検定料を誤って二重に払い込んだ場合
- ③ 出願書類の郵送

インターネット出願後に作成される入学願書・履歴書及び、その他出願に必要な書類(「6.出願書類」参照)を封筒に入れ、出願期間内に必着するように送ること。

なお、提出された出願書類は返却できないので注意すること。

【出願書類送付先】060-0810 日本国 北海道札幌市北区北 10 条西 8 丁目 北海道大学理学·生命科学事務部事務課大学院教育担当

※ 出願期間後に到着した場合は受理しないので、郵便事情等を考慮して発送すること。

6. 出願書類

* ○は必ず提出する書類、△は該当者のみ提出する書類

			資格	
	提出書類	A B C	D E	備 考
1	入学願書・履歴書	0	O*	インターネット出願サイトへ必要事項を入力後に作成される入学願書・履歴書をA4版で印刷のうえ提出すること。 ※ 出願資格D及びEによる志願者は、出願資格予備審査で出願資格が認められた後に作成・提出すること。
2	出願資格予備審査 申請書		0	〔所定様式〕 インターネット出願サイトから様式をダウンロードして作成すること。
3	写真1枚	0	0	縦4cm×横3cm
4	入学後の研究計画書	0	0	〔所定様式〕 インターネット出願サイトよりダウンロードし、A 4 判で印刷のうえ作成すること。
5	研究歷証明書		0	〔様式任意〕 研究題目・研究期間に関する大学・研究所・企業の開発研究部門等の長又は研究 指導者の証明書
6	最終出身大学院の学 業成績証明書	0	0	参考として、出身学校の指導教員等の推薦状を添えることができる。 ※原本が日本語又は英語以外の言語で書かれている場合は、「当該言語で書かれ た証明書の原本」と「公的な和訳又は英訳の原本」の両方を添付すること。
7	最終出身大学院の修 了(見込)証明書	0	0	①出身大学院等の長が作成したもの。 (既修了の場合、学位情報が記載されていることを確認してください。) ②中華人民共和国(台湾、香港、マカオを除く)の大学院等を修了、または修了見込みの者は、修了(見込)証明書に加えて、英語による以下の書類を提出してください。 既修了者 …a 学歴証書電子登録票 (Online Verification Report of Higher Education Qualification Certificate) 修了見込者…a オンライン在籍認証レポート (Online Verification Report of Student Record) 上記のうち、書類aは中華人民共和国教育部認証システム(中国高等教育学历证书查询http://www.chsi.com.cn/xlcx/bgys.jsp) より取得してください。また、提出時点でWeb 認証の有効期限が15日以上残っていることを確認してください。 ②出願資格Cによる志願者は基礎力審査に相当する審査の確認書を提出すること。 ※原本が日本語又は英語以外の言語で書かれている場合は、「当該言語で書かれた証明書の原本」と「公的な和訳又は英訳の原本」の両方を添付すること。
8	研究業績目録、主た る研究論文(写)	Δ	Δ	〔様式任意〕 研究業績等がある場合は任意で提出することができる。
9	パスポートの写し	0	0	パスポートの氏名を記載しているページの写しを提出すること。
10	その他受入教員が要 求する書類等	Δ	Δ	

7. 選抜方法

生命科学専攻(生命融合科学コース)及びソフトマター専攻

出願書類の内容及び口頭試問の成績等を総合して合格者を決定する。

- ※ 試験の日時、口頭試問方法等の詳細については別途通知する。
- ※ 生命科学専攻(生命融合科学コース)及びソフトマター専攻では、出願書類の内容によって、口頭試問を省略又は免除することがある。(該当者には個別に通知する。)

生命科学専攻(生命システム科学コース)

入学願書・履歴書、最終出身学校等の学業成績証明書、受入教員の推薦書等の出願書類の内容を総合して合格者を決定する。

生命科学専攻(生命医薬科学コース)

入学願書・履歴書、最終出身学校等の学業成績証明書、受入教員の推薦書等の出願書類の内容を総合して合格者を決定する。

8. 合格発表

合格者については、令和8年1月22日(木)16:30頃に本学院ホームページに受験番号を掲示するとともに、合格者のみに通知する。

9. 入学手続及び必要経費

入学手続きについては、合格通知の際に併せて連絡する。

入学料 282,000 円 (予定額)

授業料 267,900円 [年額535,800円のうちの前期分] (予定額)

* 在学中に授業料の改定が行われた場合には、改定時から新授業料が適用される。

10. 注意事項

- ① 出願書類等に虚偽の記載が発見された場合は、入学許可を取り消すことがあります。
- ② 病気・負傷や障がい等のために受験上特別な配慮を必要とする場合は、出願までに理学・生命科学事務部事務課大学院教育担当へ申し出てください。※修学上希望する配慮事項がある場合も併せてご相談ください。

《参考》北海道大学入学案内 合理的配慮の提供に関する情報

https://www.hokudai.ac.jp/admission/gouriteki-hairyo.html

11. 長期履修について

本学院では長期履修制度を設けているので、長期履修を希望する者は 16 頁の「長期履修について(案内)」を熟読のうえ、申請すること。

◎出願に関して不明な点等があれば、下記まで連絡すること。

〒060-0810 札幌市北区北 10 条西 8 丁目

北海道大学理学·生命科学事務部事務課 大学院教育担当 (窓口受付時間 平日8:30~12:15、13:00~17:00)

Tel (011) 706-3675 Email: r-gakuin@sci.hokudai.ac.jp

北海道大学大学院生命科学院

ホームページ https://www.lfsci.hokudai.ac.jp

北海道大学大学院生命科学院 10 月入学者選抜試験実施要項

(趣旨)

第1条 北海道大学大学院通則 (昭和 29 年海大達第3号。以下「通則」という。) 及び北海道大学大学院 生命科学院規程 (平成18年海大達第102号) に定めるもののほか、北海道大学大学院生命科学院 (以下 「生命科学院」という。) における10月入学者の選抜試験実施に関し必要な事項を定めるものとする。

(対象)

- 第2条 10月入学者選抜試験を実施する対象は、次のとおりとする。
 - (1) 修士(博士前期)課程入学者選抜試験
 - (2) 博士後期課程入学者選抜試験
 - (3) 博士課程入学者選抜試験

(出願資格)

第3条 10 月入学を志願することのできる者は、入学しようとする年度の直近の学生募集要項に記載されている出願資格を有する者及び大学院入学の前までに入学資格を有することとなる見込みの者とする。

(出願資格の予備審査)

第4条 10 月入学志願者のうち、出願資格に関する予備審査を受けなければならない者は、直近の募集要項において当該予備審査を必要とされる出願資格により志願する者とする。

(選抜試験の実施等)

- 第5条 前4条に定めるもののほか、10月入学者の選抜試験実施に関し必要な事項は、直近の募集要項を 準用する。
- 付 記 (平成 18 年 6 月 13 日生命科学院代議員会議決定) この要項は、平成 18 年 7 月 1 日から実施する。
- 付 記 (平成19年7月17日生命科学院代議員会議決定) この要項は、平成19年7月17日から実施する。
- 付 記 (平成21年5月26日生命科学院代議員会議決定) この要項は、平成21年5月26日から実施する。
- 付 記(平成23年5月24日生命科学院代議員会議決定) この要項は、平成23年5月24日から実施する。
- 付 記 (平成24年5月29日生命科学院代議員会議決定) この要項は、平成24年5月29日から実施する。
- 付 記 (平成28年9月2日生命科学院代議員会議決定) この要項は、平成29年4月1日から実施する。

長期履修について(案内)

1. 趣旨

学生が職業を有している等(介護・育児等を含む。)の事情により、標準修業年限(3年)を超えて一定の期間にわたり計画的に教育課程を修了したい旨を申し出たときは、個別に審査のうえ、その計画的な履修(以下「長期履修」といいます。)を認めることができる制度です。

2. 対象者

次の各号のいずれかの事由に該当する者で、かつ、当該事由により、学業に専念できないため、課程 修了に要する学修(研究)計画年数を予め長期に設定することを希望する者が申請できます。

- (1) 官公庁、企業等に在職している者(給与の支給を受け、職務を免除されている者を除く。) 又は自ら 事業を行っている者等フルタイムの職業に就いている者
- (2) アルバイト、パートタイム等の職業に就いている者で、その負担により修学に重大な影響があるもの
- (3) 育児、親族の介護等前2号に準ずる負担により、修学に重大な影響がある者
- (4) 視覚障害、聴覚障害、肢体不自由その他の障害を有している者で、その障害により長期にわたり修 学に重大な影響があると認めたもの

3. 在学期間

長期履修を認める期間は、博士後期課程にあっては6年以内で、年を単位として申請することができます。

また、長期履修を認められた学生が在学できる期間は6年間までです。

なお、本学院において休学できる期間は3年間までです。

4. 申請手続き等

- (1) 申請期間:長期履修申請書類は出願期間中に出願書類と一緒に提出してください。
- (2) 提出書類: ①長期履修申請書(様式1)
 - ②長期履修計画書(様式2)
 - ③長期履修が必要であることを証明する書類等(様式任意)
- (3) 可否の通知:

個別に審査を行い、入学試験合格者にのみ(合格通知と併せて)長期履修の可否について通知します。

5. 履修期間の短縮又は延長

本学院において必要と認めるときは、長期履修期間の短縮又は延長を在学する課程において1回に限り認めることができます。ただし、長期履修期間の短縮を申請することのできる期間は、標準修業年限(3年)に1年を加えた期間までです。

手続き等の詳細については、入学後に【生命科学院在学者用】の案内を参照してください。

6. 授業料の取扱い

長期履修が認められた者の授業料は、標準修業年限に納付すべき授業料の額(年額×3年)を長期履修が認められた年数で除した額を年額として決定します。なお、授業料の改定又は長期履修期間の変更が許可された場合等はその都度再計算します。ただし、納入済みの授業料を遡って調整することはありません。

【長期履修申請期間に係る授業料は、決定通知があるまで絶対に納入しないでください。】

7. その他

長期履修制度の詳細及び申請書類の請求については、本学理学・生命科学事務部事務課大学院教育担当あてお問い合わせください。

研究指導担当分野等及び研究内容一覧表

令和7年11月1日現在 博士後期課程

生命科学専攻 生命融合科学コース

分野等		当教員	研 究 内 容
	教 授	尾瀬 農之	私たちは生命現象を解明するために、立体構造をプローブとして、シグナル伝達経路に作用する因子を、がん化やウイルス感染症・免疫の観点から解明します。また、興味深い酵素反応が精巧に進行する機構を、化学の観点を大切にしながら解明します。構造生物学手法としてX線結晶解析やクライオ電顕、中性子解析、NMRの基本になるフーリエ変換をはじめとした理論をメンバーで勉強し、自分の研究に必要であればどんどん取り入れていきます。また、速度論的解析、熱量測定や活性測定などのタンパク質化学を展開し、細胞生物学を組み合わせて新たな観点を導入します。さらに、水素原子を意識するための中性子線結晶構造解析も独自の方法で進めていきます。https://altair.sci.hokudai.ac.jp/g6new/
生命情報分子科学	准教授	上原 亮太	正確な細胞分裂は生命の維持や継承に欠かせませんが、細胞がどのようにその中身を等分するのか、またこの制御の破綻がどのように細胞の性質を変化させ様々な病態を引き起こすのか、それらの原理は不明です。先端顕微鏡技術と様々な細胞操作実験を組み合わせることで、分裂を制御する「細胞装置」の造りと働きかたを調べ、細胞が正しく二つに分かれる仕組みと、その破綻が引き起こす生物学的影響の解明を目指します。https://altair.sci.hokudai.ac.jp/uehara_lab/
	教 授	中岡(慎治	数理生物学とは、生物学に数理科学的手法やデータ解析を応用して、実験や観察データのみではわからない現象の理解を目指す分野です。本研究室では、生命現象の数理モデリングやデータ解析手法の開発・応用を中心に、分野横断・学際的な研究を進めています。具体的なテーマとして、(i) 腸内や土壌など様々な環境に存在する微生物叢の生態系を数理的に理解・制御することで発症予防や作物作成の改善につなげる研究、(ii) 医療データ解析、(iii) トランスクリプトームなど網羅的塩基配列データに関わるバイオインフォマティクス研究、(iv) 生命現象の解析に役立つ汎用的な数理科学手法を開発・深化させる純理論的研究等を展開することで、基礎・応用両面で学際研究を推進していきます。https://altair.sci.hokudai.ac.jp/infmcb/
4- △ Massifi 本	教 授 准教授 特任准教授	門出 健次 谷口 透 湯山 耕平	核酸・タンパク質・糖鎖・脂質などの生体分子を有機化学的に原子レベルで理解することにより、生体機能を理解・制御する学問が化学生物学であり、我々はとりわけキラル関連化学生物学の展開を目指している。赤外円二色性(VCD)などの新たなキラル分析法を開発し、それらを脂質・糖鎖へと応用し、得られた情報を基に構造とその生物学的活性との関連を研究している。また、肥満、アルツハイマー病、アトピー性皮膚炎、ガン等の脂質関連疾患を対象とした酵素阻害剤の開発を実施している。脂質ケミカルバイオロジー確立のための方法論、脂質や天然物ライブラリーの構築、短波赤外蛍光イメージング、細胞外小胞を用いた認知症治療・診断技術開発などを展開中である。https://altair.sci.hokudai.ac.jp/infchb/
生命物質科学	教 授	藤原 幸一	安価に収集できるビッグデータを高速な計算機で処理して機械を学習させればヒトよりも賢い機械を創造できる…現在の人工知能ブームはそんなナイーブな思い込みを拠り所に、深層学習を中心に発展してきました。その一方で、ヒトの経験、少数のエキスパートのみが有する暗黙的な知識、発生自体が稀であったり収集が高コストなデータは、忘れ去られています。我々は、あえてスモールなデータに着目し、ヒトの経験や暗黙的な知識も積極的に取り込む解析を行うことで、ビッグデータと専門家の有する知識やノウハウを融合させて、新たな医療AIや医療機器の開発、医学の発展につなげます。また、スモールデータを解析するための方法論や新規の機械学習アルゴリズム、数理モデル、そしてデータを通じた基礎医学・神経科学への貢献を目指しています。https://life.sci.hokudai.ac.jp/t1/lab/biomedical-data-science

生命科字専攻 生命 分 野 等		当 教 員	研 究 内 容
	教 授	中村 公則	生体は微生物の排除と共生という基本的なメカニズムとして粘膜免疫系を有しています。数十兆の細菌が私たちの腸内には共生しており、これらは腸内細菌叢を形成することで免疫、代謝、再生など様々な生体の恒常性維持機能に関与します。この腸内細菌叢との共生の破綻は、肥満や老化、さらにはうつ病、自閉症、アレルギーや癌など多くの疾患の発症に関与します。また、妊娠期の母親の腸内細菌叢破綻が子供の将来における健康に悪影響を及ぼすことも知られています。私たちは、腸管粘膜免疫における腸内細菌との共生の仕組みを、抗菌ペプチド α ディフェンシンの構造機能相関及びその産生細胞であるPaneth細胞の分子動態から解明しています。さらに「排除」と「共生」のメカニズムを理解することで、腸管上皮細胞を起点とする多彩な免疫制御機構が「医食同源」の科学的本態であることを解明し活用する研究を行っています。胎児期から老年期までの全てのライフステージにおいて、粘膜免疫と腸内環境が関与する様々な疾患の克服を目指します。https://altair.sci.hokudai.ac.jp/infsig/
細胞機能科学	准教授	北村 朗	生きた細胞内で活動する機能性分子は、それぞれダイナミックに動的な相互作用を行いながら、細胞内を拡散したり、あるいは集積することで機能している。このような生体分子のミクロな動きからマクロな細胞機能に至る関係性を明らかにするために、ライブセルイメージングや単一分子豊光相関分光法(FCS)、などをはじめとする光計測技術を用いた生命機能解析を分子レベルで遂行する。具体的な生物学的問題点としては、筋萎縮性側索硬化症(ALS)や緑内障などの神経変性疾患に関連したタンパク質凝集体による神経細胞死の原因究明、非膜性オルガネラ・集積体が担う細胞保護的役割の解明研究を推進する。培養細胞に加えて線虫の表現型・寿命解析も行っている。https://altair.sci.hokudai.ac.jp/infmcd
	准教授	安達 広明	植物は、哺乳類とは異なり免疫に特化した細胞を持つのではなく、葉から根に至るまであらゆる組織にある1つ1つの細胞が病原体を認識し、免疫応答を起こすことで病原体を排除します。私たちの研究室では、環境中の多種多様な病原微生物に対し、植物がどのように対抗してきたかという "植物一微生物間相互作用における共進化"の観点から、植物のもつ免疫システムの包括的な理解を目指しています。特に、1) ゲノム情報を活用した免疫受容体遺伝子と病原体認識の多様性に関する研究、2) 植物免疫受容体と病原体分の相互作用をタンパク質構造レベルで解明する研究、3)免疫応答時の植物細胞シグナル伝達機構を解明する研究、4) 病原微生物が宿主植物へ感染する戦略を解明する研究に取り組みます。植物免疫の仕組みと病原微生物の感染戦略の両側面を分子レベルで明らかにできれば、病気に強い植物の作出が期待できます。https://life.sci.hokudai.ac.jp/fa/lab/plant-immunity
生命機能制御科学	教 授	比能 洋	私達は「遺伝情報が翻訳後修飾される際の分子機構やその生物学的意義」を解明する過程で「タンパク質の抗原構造が疾患特異的に、しかもダイナミックに変化している」ことを発見しました。例えば、癌と間質性肺炎の患者のある同一のタンパク質の糖鎖構造の違いにより抗原ペプチド領域の立体構造が大きく変化します。この発見が契機となり、静的な抗原性が動的な翻訳後修飾により変貌することを意味する新概念「動的エピトープ理論」を提案しました。この様な疾患特異的な動的エピトープを攻撃する抗体医薬品の研究開発を堅牢な産学連携により推進しています。また、独創的なフォーカスドライブラリ構築技術を核としたマイクロアレイによる並列機能解析や生体内の特定構造の絶対定量技術、糖鎖選択的な捕捉とイオン化技術を核とした質量分析による特徴的糖鎖構造の探索と迅速同定技術など、「糖鎖の型(グリコタイプ)」が鍵となる標的とした分子レベルの生命情報探索技術の革新を続けています。https://altair.sci.hokudai.ac.jp/g4/
分子適応科学 (連携分野・ 国立研究開発法人 産業技術総合研究 所)	客員教授 客員教授 客員准教授	小松 康雄 近藤 英昌 平野 悠	未知・未利用生物資源の探索とそれらの生化学的性質の解明,遺伝子発現を効率的に調節可能な機能性核酸の創出と核酸医薬への応用、電気化学的手法による物質検出や細胞観察、および産業用タンパク質の3次元分子構造解析を行う。これら遺伝子、タンパク質、細胞レベルでの知見を結合して生命構造原理を解明することで、独自の新しいバイオテクノロジーを創成する。https://altair.sci.hokudai.ac.jp/g_renkei/index.html
フロンティア 生命材料科学 (連携分野・国立研 究開発法人物質・材 料研究機構)	客員准教授 客員准教授	山崎 智彦 吉川 千晶	茨城県つくば市にある物質・材料研究機構内で研究を進めています。 ヒトには侵入してきた病原体のDNAやRNAを認識して免疫を活性化させる機構があります。私たちは、この機構を利用して、人工合成した核酸をナノ粒子と結合させた核酸ナノメディシンを開発し、感染症やアレルギーの治療に応用する研究を行っています。また、高分子の構造と機能の相関に立脚した分子設計により、生体機能を自在に操ることのできる高分子材料を創出します。精密重合から環境・医療・ヘルスケア応用まで、幅広い研究領域で基礎・応用研究に取り組みます。 https://life.sci.hokudai.ac.jp/tl/lab/frontier-biomaterials-science https://www.nims.go.jp/group/frontierbiomaterials

※教員の構成は変わる可能性があるので、最新の情報については生命科学院ホームページ等で確認してください。

研究指導担当分野等及び研究内容一覧表

令和7年11月1日現在

博士後期課程

生命科学専攻 生命システム科学コース

分 野 等	担	1. 当 教 員	研 究 内 容
細胞高次機能科学	教 授	藤田 知道	「発生・環境応答・進化」をキーワードに、ヒメツリガネゴケ、シロイヌナズナなどを用い、分子細胞レベルで研究する。植物幹細胞の細胞極性や不等分裂、細胞周期、細胞間コミュニケーションのしくみを調べ、植物細胞の全能性や増殖・分化の分子基盤を明らかにする。また植物の成長とメカニカルストレスや環境ストレス応答のクロストークのとくみを明らかにし、植物がいかに環境に適応し成長するのか、またそのしくみをどの様に進化させてきたのかを調べ、極限悪環境下・地球外惑星(火星など)や宇宙船内でもよく育つ植物の創出を目指す。そのためアブシジン酸、オーキシン、光シグナル伝達、月や火星のテラフォーミング技術にも注目している。https://keitail.sci.hokudai.ac.jp
	准教授	楢本 悟史	植物は動物とは異なり移動できませんが、植物のからだのなかで、オーキシンを極性輸送することで、外部環境に応答しながら、個体の発生・成長を制御しています。本研究室では(1)オーキシン極性輸送の分子メカニズム、および(2)その進化のプロセス、(3)植物形態の多様化における役割に関する研究を行います。また、(4)光・重力、土壌環境などの外部環境がオーキシン極性輸送に作用し、発生・生長を制御するメカニズムに関して研究を行います。加えて、(5)葉の形態多様化、共生などの進化生物学的に興味深い現象についても研究を行います。https://keitail.sci.hokudai.ac.jp
	准教授	綿引 雅昭	生命システムは遺伝子発現の時間的,空間的な制御機構によって成り立っています。私たちは植物ホルモンや光に応答する遺伝子群に着目し,遺伝子発現を詳細に解析しています。具体的には1)ルシフェラーゼやGFPを用いた時間的空間的な遺伝子発現プロファイリング,2)発現プロファイリングに基づくシミュレーション植物の構築,3)時空間制御の基盤となる遺伝子群の探索などです。http://www.sci.hokudai.ac.jp/watahiki/mkwhp/index.html
環境応答統御科学	教 授	中野 亮平	野外の植物は、植物免疫によって病原菌から身を守り、様々な環境ストレスに対応し、さらにその上で生長を担保して次世代に種子を残さればならない。成長と防御はトレードオフの関係にあると言われ、自然環境で植物はそれをどう両立させているのか、永らく謎であった。当研究室では最近、植物組織内外に常在する微生物のコミュニティ(マイクロバイオータ)が生長と防御的協調的制御に重要な役割を担っていることを明らにした。現在はその分子メカニズムを解明することを目的に、植物と細菌の分子遺伝学や生化学、大規模マルチオミクス解析、顕微鏡を用いた時空間ダイナミクスの解析などに取り組んでいる。今後は野外圃場を用いた実験や広範な植物種を利用するなどして、より生態学的に意味のある分子生物学的知見の蓄積に取り組んでいきたい。https://rtnakanolab.com/
	准教授	伊藤 秀臣	本研究室では、陸上植物を実験材料として、ゲノム構造の変遷機構・遺伝子の発現調節機構に関する研究を行い、植物の環境適応機構の解明を進めています。RNA分子の関わる遺伝子発現制御機構や、動く遺伝子トランスポゾンがゲノム構造や遺伝子発現に与える影響について、環境ストレス応答との関連性に焦点をあてた研究を行っています。これらの研究を通して、植物の巧みな生存戦略について理解しようとしています。https://sgd.sci.hokudai.ac.jp/
	教 授	千葉由佳子	植物は様々な環境変化に常に対処しながら生育している。それには様々な遺伝子発現調節が伴うが、これまでの研究のほとんどは転写制御に注目して行われてきた。しかしながら、実際の細胞内のmRNA量は合成と分解のバランスにより調節されており、我々はその両方の制御を理解することによって、植物の持つ巧妙な環境応答機構を分子レベルで明らかにすることを目指している。具体的には、低温ストレスや糖および二酸化炭素過剰ストレス応答に関わるmRNA合成と分解の協調的制御の研究を、モデル植物であるシロイヌナズナを使って行っている。https://chibalab.main.jp/lab/
	准教授	佐藤 長緒	地表に固着して生きる植物は、厳しい環境変化に対して、様々な外部環境シグナルの統合というプロセスを経て、細胞・組織内の微環境を変化させ、個体としての生存と成長最適化を実現している。このような優れた環境適応ダイナミズムの分子機構解明を目的とした研究を進めている。具体的には、1) タンパク質翻訳後修飾(ユビキチン化・リン酸化)を介した細胞内膜交通系制御、2)細胞死研究を中心とした植物免疫制御、3)栄養シグナルによる「花成」制御機構に関する研究、を行っている。https://biol.sci.hokudai.ac.jp/

分 野 等	市システム科 担	1 当 教 員	研 究 内 容
行動制御科学	教 授	小川 宏人	昆虫をモデルとして、カルシウムイメージングなどの光学計測法による感覚情報処理や運動方向制御の神経機構の解析を行い、個体の行動の基盤となる「神経システムアーキテクチャ」の理解を目指す。現在の主な研究テーマは、1)音源定位ナビゲーションを実行する神経回路の全計算過程の解明、2)巨大介在ニューロンにおける刺激方向の抽出と統合アルゴリズムの研究、3)気流方向情報の集団細胞活動によるコーディング様式の解明、4)異種感覚統合による逃避行動変化の解析、5)逃避戦略における行動選択の意思決定機構の解明など。https://ogawalab.sci.hokudai.ac.jp/
	教 授	和多 和宏	和多研究室では、1)音声発声学習とその臨界期制御に関わる神経回路の動作原理の理解、2)発声行動進化を支える分子ゲノム基盤の解明、3)これらの研究応用の一つとして吃音発症の神経行動学的理解を目標としている。親鳥のさえずりを学習する鳴禽類ソングパードを用い、分子生物学・神経生物学・動物行動学といった研究手法により、動物行動の形成原理を「生まれと育ち」の観点から明らかにしていく研究を進めている。http://www.wada-lab.org/
	教 授	相馬 雅代	動物行動学・行動生態学・比較認知科学・進化生態学といった側面から、鳥類の家族関係や社会関係に着目し、求愛行動やコミュニケーション行動の機能と適応的意義を探ることで、行動を支える高次認知機能の進化の解明を目指している。主たる研究テーマは、(1)鳥類における求愛ディスプレイの個体差と機能、(2)鳥類の親子関係における視聴覚コミュニケーション、(3)母鳥の産卵繁殖行動および母性効果の適応的意義、など。http://www.lfsci.hokudai.ac.jp/search/system/soma.html
	准教授	竹内 勇一	ヒトの利き手に代表される「右利き」と「左利き」は、実はさまざまな動物でみられる 現象です。利きがあることで、運動能力を最大限発揮することができ、生存上有利とな ると考えられています。しかし、右利きと左利きの脳神経系の違いや、利きの発達過 程、どのような遺伝子や分子に調節されるか、進化的にいつ成立したかなど、いまだに 本質的な謎が残されています。わたしは利きが顕著なことで知られるアフリカの鱗食性 シクリッドを用いて、右利きと左利きを司るメカニズムとその機能について研究を行っ ています。 http://www.neuroecology-takeuchi.com/index.htm
	准教授	田中 暢明	ショウジョウバエやヒメイカを使って、動物が外界の環境を認識し、それに適応するための神経機構について遺伝学・生理学・解剖学・行動学を駆使して研究を行っている。主なテーマは、嗅覚などの感覚情報処理機構の研究であるが、環境適応のための神経内分泌系の研究も行っている。https://sites.google.com/view/nktanakalab
	准教授	常松 友美	一日8時間寝るとすると、私たちは人生の3分の1もの時間を睡眠に費やします。しかしながら、「なぜ眠るのか?」「なぜ夢をみるのか?」など根本的な問いに未だ正しく答えることはできません。私たちの研究室では、様々な遺伝子改変マウスを用いて、これらの問いに迫る研究を行っています。特に夢見の神経メカニズムや生理的役割を明らかにしたいと思っています。そのために、電気生理学、光イメージング、光遺伝学、解析のためのプログラミングなどの研究手法を用いています。
生殖発生科学	教 授	勝義直	当研究室では、ステロイドホルモン、ステロイドホルモン受容体をキーワードとして国内外の研究者と共同研究を進めながら以下の研究を行なっている。(1)ステロイドホルモン受容体遺伝子の分子進化の解明、(2)主に魚類を材料にした内分泌かく乱物質の影響調査と試験法の開発、などである。https://www.repdev-katsu.jp/index.html
	教 授	黒岩 麻里	遺伝的に性が決まる生物では性の決定を担う遺伝子が存在し、その性決定遺伝子が連鎖する染色体を性染色体とよびます。性染色体をもつ生物の中には、進化過程において性染色体に分化が生じ、形態的にも機能的にも雌雄間で違いが生じているものがいます。また、性染色体の組み合わせ(XX、XYあるいはZZ、ZWなど)は受精の段階で決定されます。私たちは、脊椎動物の性決定、性分化、性染色体の機能、X染色体不活性化に焦点をあて、それらの分子メカニズムや進化過程を探っています。https://sites.google.com/site/kuroiwagroup/home
	教 授 准教授	木村 敦 北田 一博	ヒト、マウス、ラットなど多くの哺乳類のゲノム配列が明らかとなり、その機能を解析できる段階になっています。我々はマウスやラットなどを対象として、精子形成における多機能性ゲノムとlong noncoding RNAの解析、卵巣における転写活性化、精子形成と胎盤分化におけるプロテアーゼ機能の解析、神経系や生殖器系における個々の遺伝子の機能や遺伝子間ネットワークの解析などを行っています。https://apkimuralab.com/https://www2.sci.hokudai.ac.jp/dept/bio/teacher/kitada-kazuhiro
	准教授	小谷 友也	卵母細胞の形成と初期発生を制御する分子機構を,魚類と哺乳類を用い遺伝学的・細胞生物学的・分子生物学的に研究している。現在は次のテーマを進行している。(1)卵母細胞の形成と初期発生に重要な役割を持つ新規因子の同定,(2)卵母細胞の形成と初期発生過程における翻訳機構の役割解明,(3)生きた卵と胚における,RNAや蛋白のイメージング技術の開発。
	准教授	荻原 克益	当研究室では、脊椎動物の生殖現象について分子レベルで解明する事を目的に研究を行っている。特に、卵巣の機能に着目し魚類と哺乳類を用いて、(1)排卵機構に関する研究、(2)排卵の内分泌制御機構に関する研究、(3)濾胞選択の分子機構に関する研究、(4)排卵後の濾胞組織の運命(組織修復と迅速分解)に関する研究を行なっている。 https://sites.google.com/view/hokudai-ogiwaralab-jap
	准教授	水島 秀成	当研究室では、多精受精が生み出す鳥類に特異な卵細胞質内シグナルについての研究を分子生物学的に研究しています。現在はウズラを用いて以下の研究テーマを中心に行なっている。(1)雌性核との融合に与らない余剰精子の分解機構,(2)始原生殖細胞の誕生に果たす受精シグナルの解析,(3)内分泌撹乱物質を用いた始原生殖細胞の細胞応答。

研究指導担当分野等及び研究内容一覧表

令和7年11月1日現在 博士後期課程

生命科学専攻 生命医薬科学コース

分 野 等	担	当 教 員	研 究 内 容
生化学	教授講師	木原 章雄 永沼 達郎	脂質のこれまで解明が進んでこなかった機能としてバリア機能がある。このバリア機能には皮膚角質層および涙液油層における透過性バリア、神経系のミエリンにおける絶縁パリアが含まれる。生化学研究室では、これらに関わるバリア脂質(皮膚角質層、セラミド類;涙波油層、ワックスエステル類など;ミエリン、ガラクトシルセラミド、プラズマロージェンなど)の産生機構、代謝、それらの産生ができない遺伝子KOマウスを用いた生理機能、病態との関わりについて解析を行なっている。https://www.pharm.hokudai.ac.jp/seika/index2.php
RNA生物学	教 授 准教授	中川 真一 米田 宏	私たちの研究室では、高等真核生物のゲノムに潜む未知の遺伝子の謎に挑戦しています。高等真核生物のゲノム中には、その配列から機能を予測することができない未知の遺伝子が多数存在するものの、その機能がまだ解明されていないため、興味深い研究対象となっています。例えば、タンパク質をコードしないノンコーディングRNAは少なく見積もっても2万種類程度は存在すると言われていますが、ごく一部のものについては機能解析がすすんでいるものの、大部分のものについては全く機能がわかっていません。また、タンパク質をコードしている遺伝子についても、既知の機能ドメインを持たないものが数百を遥かに超えるオーダーで存在しており、それらの機能ドメインを持たないものが数百を遥かに超えるオーダーで存在しており、それらの機能に対けてすることなしに、生物が持つポテンシャルを明らかにすることはできないでしょう。近年、これらの配列から機能を予測することができない遺伝子産物の多くが特定の立体構造を取りにくいという共通した性質を持っていることが明らかとなりつつあり、それらが作る柔軟でダイナミックな性質を持っていることが明らかとなりつつあり、それらが作る柔軟でダイナミックな性質を持っているたの後間にも注目が集まっています。RNA生物学分野では、ゲノム編集技術を用いてこれら機能未知の遺伝子の変異体を作ってその表現型解析をすることで、これまで知られていなかった新たな機能分子や分子動作機構を明らかにし、それらを新たな創薬研究につなげることを目指しています。https://sites.google.com/rnabiol.com/home
衛生化学	教 授	木村 俊介	腸管、気管などの粘膜は口、鼻を入口として外界とつながる。粘膜を覆う上皮は外界の情報や必要な物質を取り入れつつ、不必要な異物は排除する役割を果たす。およそ数十マイクロメートルの薄い上皮層には数種類の特殊な上皮細胞が存在し、これらの複雑な機能を果たす。これらの機能破綻は疾患に繋がり、病原性微生物はうまく利用して体内侵入を試みる。さらに、上皮細胞の機能を人工的に制御することで、体内への薬剤送達、免疫系の制御が可能になると期待されている。衛生化学分野では、これらの特殊な上皮細胞、特に、管腔内抗原を取り込むM細胞に着目し、その分化制御、粘膜免疫における役割を明らかにすることを目指す。
生体分子機能学	教 授 教 授 准教授	前仲 勝実 黒木 喜美子 喜多 俊介	生体防御の最前線においては、免疫系細胞を中心とする細胞表面受容体が、ガン細胞・ウイルス感染細胞・感染微生物の表面にある抗原蛋白質を認識し、排除する。他方、このシステムが崩れると、自身の細胞を誤って排除し、自己免疫疾患などへ進む。これらの免疫・感染に関わる疾患の基盤となる生命現象をクライオ電子顕微鏡等を用いて原子レベルで理解し、合理的な薬剤設計およびバイオ医薬品の開発を行っている。具体的には、これらの受容体/表面抗原蛋白質および阻害薬剤・バイオ医薬品の立体構造解析や物理化学的解析から疾患モデル動物への投与実験などを行っている。https://convallaria.pharm.hokudai.ac.jp/bunshi/index.php
天然物化学	教 授 准教授	脇本 敏幸 松田 研一	海洋生物(海綿、ホヤ、共生微生物)や生薬・食品からの生物活性物質の探索と構造研究を行っている。海洋生物を起源とする天然生物活性物質においては、さらに生合成遺伝子クラスターの探索や生産を担う共生微生物の同定を試みている。生薬や食品有効成分に関しては、不安定化合物等に着目し、その単離や作用機序解析を進めている。https://www.pharm.hokudai.ac.jp/tennen/
精密合成化学	教 授 准教授	佐藤 美洋 大西 英博	生物活性化合物や機能性物質の合成に利用し得る新しい反応の開発を目指し研究を行っている。特に、有機金属錯体の特性を利用した新反応の開発、触媒的不斉合成への展開、また地球環境に優しい「環境調和型」有機合成反応・触媒プロセスの開発にも力を注いでいる。更に、それらの反応を利用した生物活性化合物等の合成研究も行っている。https://hokudaigouka.main.jp/
天然物合成化学	教授准教授	長友 優典 渡邉 瑞貴	有機合成化学を基盤として医薬創製に貢献する。特に、強力な生物活性を示す、高酸化多環式天然物や稠密官能基化天然物の効率的、実用的かつ柔軟な合成を進めている。本研究の中核は、構造的に複雑な天然物を簡潔な方法で組み立てる新しい戦略の開発である。斬新な合成戦略の開発により、天然物の構造を改変することで、新規人工アナログの統一的な合成が可能になる。天然物および合成アナログの新しい合成法は、その薬物的特性を調整・強化し、多様なシグナル伝達を制御することを可能にし、それによって生命科学の研究に新しい研究手法を提供する。https://www.pharm.hokudai.ac.jp/tengo_105/

生命科字專以 生命 分 野 等	市医楽科字コ 担	当教員	研究内容
分子触媒研究	教 授 准教授	浦口 大輔 浅野 圭佑	これまで世の中に無かった分子を生み出し、その構造に内在する触媒としての力を引き出すことで、生物活性化合物の合成反応に関わる活性種(アニオン・ラジカル・カチオン)の自在制御を目指している。また、その過程で明らかになる分子の振る舞いを実験的・理論的に理解することで、医薬品の効率的な供給に資する新たな化学反応の創出に取り組んでいる。
薬理学	教 授 准教授 准教授	南 雅文 天野 大樹 木村 生	行動薬理学的手法や電気生理学的手法、光遺伝学的手法、神経活動イメージングといった様々な実験技術を用いて、抑うつ、不安、嫌悪、恐怖などの負情動(negative emotion)や動物の社会行動・養育行動・学習行動に関わる神経回路とそこで機能する神経伝達物質を明らかにしていくことで、精神疾患・情動障害のメカニズム解明と治療薬創製に向けた研究を行っている。https://www.pharm.hokudai.ac.jp/yakuri/
薬剤分子設計学	(教 授) 准教授	(山田 勇磨) [※] 佐藤 悠介	薬剤分子設計学研究室では、体、細胞の中で目的の場所に薬を運ぶナノカブセルの開発を中心に研究を進めており、遺伝子・核酸治療、オルガネラ標的薬、核酸ワクチンなど次世代医薬品の開発を目指してる。また、オルガネラ制御を基盤とする細胞操作の実践・オルガネラ製剤開発にも挑戦している。https://www.pharm.hokudai.ac.jp/yakusetu/
(未来創剤学)	教 授	原島 秀吉	未来創剤学研究室は、特別教育研究経費の戦略的研究推進プロジェクト「血管を標的とする革新的医薬分子送達法の基盤技術の確立」の一貫として平成21年4月より発足し、平成26年4月から新たなプロジェクト「血管を標的とするナノ医療の実用化に向けた拠点形成-がんを始めとする国民病を血管から治療する-」のもとで再スタートした。薬剤分子設計学研究室と密接な協力のもとで遺伝子病制御研究所、北大病院と連携して、癌や脂肪組織の病変血管を標的として次世代の核酸医薬を能動的に送達する革新的DDS(ドラッグデリバリーシステム)の開発し、非臨床試験・臨床試験へと展開することを目指している。https://www.pharm.hokudai.ac.jp/mirai/
生体分析化学	(教 授) 准教授	(小川美香子) [※] 家田 直弥	生体分析化学研究室では、生体内の特定の分子を可視化する技術である分子イメージングに関する研究を行っており、これによる疾患の病態解明や早期診断、薬物治療効果評価を行うことを目指している。放射性物質を使った分子イメージング法(PET、SPECTなど)や蛍光物質を使った分子イメージング法、核磁気共鳴イメージング法(MRI)などについて、病態や標的分子、評価方法を考慮して最適な手法を選択し、インビボで生体分子の画像化を行っている。このためのイメージング剤の開発も主とする研究テーマであり、最近では、イメージングだけでなく同時に治療も可能にする薬剤の開発にも取り組んでいる。https://www.pharm.hokudai.ac.jp/bunseki/
創薬科学研究 教育センター (有機合成医薬学部 門)	教授講師	市川 聡勝山 彬	アカデミア発創薬に貢献すべく、①医薬品開発に有望な活性と複雑な構造を持つ天然物や、核酸やペプチドなどの生体高分子を研究対象として、有機合成化学を基盤とした実用的かつ高効率的な化学合成、そのための方法論と合成戦略の開発、②疾患や生命現象の理解を指向した機能性分子の創製を軸に創薬科学研究を展開している。高次活性評価やケミカルバイオロジー的手法を用いた作用機序の解明も行い、天然物や生体高分子の機能を凌駕する創薬リードの創製と創薬理論の開発を目指す。https://www.pharm.hokudai.ac.jp/gouseiiyaku/index.php
創薬科学研究 教育センター (バイオ医薬学部 門)	教 授 (兼務) 准教授 特任講師	前仲 勝実 多留 偉功 野村 尚生	日本発のアカデミア創薬を目指し、本センターでは、化合物ライブラリー拠点の全国拠点の一つとして、難治性疾患ターゲットを中心に、低分子・中分子化合物のスクリーニング、クライオ電子顕微鏡解析、疾患モデル解析、インシリコスクリーニングおよび最適化研究を行っている。同時に高分子創薬として抗体医薬や核酸医薬等のバイオ医薬の開発にも取り組んでいる。https://www.pharm.hokudai.ac.jp/soyaku/laboratory_02.html

生命科学専攻 生命医薬科学コース

分 野 等	担	当教員	研 究 内 容
ゲノム医生物学	准教授	太田 信哉	真核生物のゲノムは、規則性を持った3D構造体として核内に存在する。その3Dゲノム構造は、転写やDNA複製・修復等の様々な生命現象と密接に関わっており、その破綻は、ガンや発達障害に関わっていることが例証されている。当研究室では次世代シーケンサーを用いた最先端のゲノミクスはもとより、プロテオミクスや細胞生物学等の手法を用いて、3Dゲノム構造を決定する分子メカニズムとその構造が様々な生命現象において果たす役割の解明を目指して研究を進めている。また、ヒトの細胞老化に焦点を当てた研究も展開しており、老化細胞の3Dゲノム構造の破綻が、発がんプロセスを誘導する分子メカニズムの解明を目指している。https://www.igm.hokudai.ac.jp/3dgenome/ja/index.html
感染腫瘍学	准教授	紙谷 尚子	ピロリ菌はcagA遺伝子を保有する菌株と保有しない菌株に大別されるが、胃癌発症に関与するのはcagA陽性株である。ピロリ菌の菌体内で産生されたCagA蛋白質は、菌が保有するIV型分泌機構によってヒト胃上皮細胞内に注入される。CagAは胃上皮細胞内の複数の標的分子に結合し、その機能やシグナル伝達経路を脱制御する結果、細胞癌化を促すと理解されている。当分野では、cagA陽性ピロリ菌感染に起因する胃癌発症機構の解明を目指している。
分子細胞生物	准教授	岡崎 朋彦	分子細胞生物研究室は、「細胞が受け取った様々なシグナルをどのように情報処理してアウトプットへと変換するか」という問いに対し、(1)タンパク質の翻訳後修飾や局在制御、または(2)オルガネラ間コミュニケーションの立場から解決を目指します。また本研究室では、(3)脳における神経と免疫の新たな機能連関や(4)キイロショウジョウバエを用いた神経行動学についても研究を行っています。これらの研究を通じて、生きものの「美しさ」を発見し、北海道の地から世界へ発信したいと考えています。https://www.igm.hokudai.ac.jp/molcell/

※ 臨床薬学専攻専任教員

※教員の構成は変わる可能性があるので、最新の情報については生命科学院ホームページ等で確認してください。

ソフトマター専攻

分 野 等	担	当 教 員	研 究 内 容
ソフトマター 材料科学	教 授 准教授 准教授	襲 剣萍 中島 祐 印出井 努	(1)本研究室はソフトマターである「ゲル」を取り扱っている。柔らかくて大変形することに加えて、生体のような優れた機能、特に力学機能を有する高分子ゲルを創製し、その機能発現の原理を解明すると共に、ゲルを軟骨などの生体代替軟組織へ応用することを目指している。また、これらのゲル研究の成果を他のソフトマター材料へ拡張し、工業材料へ応用することも目的にしている。代表的な研究テーマは1)高強度・高靱性ゲル・エラストマーのデザインと創製、2)ソフトマターのグイナミックスと破壊・疲労機構の解明、3)水中接着性ゲルのデザイン・創製とその機構解明、4)高靭性ソフト複合材料の創製と破壊機構の解明、5)筋肉のように鍛えると強くなるゲルのデザインと創製、6)パイオミネラルゼーションによるソフトセラミックスの創製、7)高温でガラス化するソフトマテリアルの創製、8)ダブルネットワークゲルによる高分子鎖の力学解析(2)次世代物質生命科学研究センター・ソフトマター国際連携ユニットと連携し、ソフトマターの新規材料開発に関する理論、特に力学機能の発現原理の解明を行う。https://altair.sci.hokudai.ac.jp/g2/
	准教授	野々山貴行	私たちの身のまわりには「やわらかい物質=ソフトマター」が数多く存在しています。ゼリーやクリーム、ゴム、スポンジ、そして私たちの身体を構成する生体組織も、すべてがソフトマターです。こうした物質は、固体と液体の双方の性質を併せ持つユニークな性質を有し、様々な刺激や環境の変化に敏感に応答します。本研究室では、このソフトマターの構造と機能を理解し、制御し、融合させ、応用することを目指しています。特に、生体と高い親和性を持つソフトマターは、医療・ヘルスケア分野での応用において極めて重要です。人工組織、再生医療、柔軟なセンサやアクチュエータなど、次世代のバイオマテリアル開発に不可欠な素材として注目されています。こうした機能性ソフトマテリアルの設計にあたり、天然由来の高分子や、生体無機物、生物資源の利活用にも力を入れています。単純な天然物を用いた材料合成ではなく、天然物が有する物質的な個性を最大限に引き出した新たな天然由来のソフトマテリアル創製を目指します。https://sites.google.com/elms.hokudai.ac.jp/nonoyama-lab
	教 授	黒川 孝幸	私達は機能性高分子ハイドロゲルを創製し、その機能のメカニズムを理解し、得られた知見を新規機能性ゲルの設計指針として更に高機能な材料を創製するサイクルを繰り返す事によって、螺旋階段を登るように高分子ゲル材料の有用性を高めていきます。螺旋階段の途中にはバイオマテリアルにつながる技術となったり、新たな物性測定法を開発したりして、社会応用への出口へとつながっています。基礎から応用に至るまでゲル研究を通して学ぶことができます。研究テーマの例を挙げると、強靭なダブルネットワークゲルを人工軟骨へ応用することに繋がる基礎的な摩擦/摩耗・疲労の理解、治療に用いるゲルの創製と物性解析、強靭なソフト複合材料などです。https://altair.sci.hokudai.ac.jp/tsl/
	教 授	李 响	私たちは、ポリマー溶液、ゲル、エラストマー、ミセル、コロイド、生体組織などの幅広いソフトマテリアルを対象に研究を行なっている。ソフトマテリアルのナノ構造とそれに起因するユニークな物理的特性の関係性を理解することを目指し、光や、X線、中性子散乱を用いた構造・ダイナミックス解析、物理的な刺激を与えるレオロジー測定、さらには分光測定を組み合わせた多角的な評価手法を駆使している。このような基礎研究から明らかになった物性発現のメカニズムを利用して、これまでにない新しい高機能材料の開発も進めている。https://www.xiangli-lab.com/
ソフトマター 生命分子科学	准教授	菊川 峰志	タンパク質は生命機能を持つソフトマターであり、細胞の中で実に巧妙に働いている分子機械である。タンパク質は、どのようにその構造を形成し、どのように構造を変化させ、どのように機能を導くのか?本研究室では、「光をエネルギー源として働くタンパク質、光受容タンパク質)。を主な研究対象にして、分光法や電気化学測定法を駆使しながら、時々刻々と変化するタンパク質の様子を原子レベルでとらえ、タンパク質の動作原理の解明に取り組んでいる。得られた知見をもとに、光受容タンパク質の機能を自由にデザインすることが究極の目標である。https://altair.sci.hokudai.ac.jp/infana/
	教 授	相沢 智康	本研究室はソフトマターであるペプチド・蛋白質等の生体高分子を中心的な研究対象として、核磁気共鳴(MMR)法やX線結晶構造解析法を中心に用いた研究を展開している。ペプチド・蛋白質の効率的生産技術の開発や、その技術を応用した立体構造・機能相関の解析を進め、蛋白質分子の自由なデザインとその応用によるバイオマテリアルの創造を目指す。特に、抗微生物活性を見しとトの自然免疫等の生体防御でも極めて重要な働きを担う抗菌ペプチドの活性発現機構の解明や、花粉症や食物アレルギーの原因となるアレルゲン蛋白質の分子レベルでの抗体による認識と免疫細胞活性化機構の解明、低温下で生体内で発生した氷の微結晶に結合して成長を阻害することで生体全体が凍結することを防ぐ不凍タンパク質の構造・機能・系統解析、といった研究テーマに積極的に取り組んでいる。また、MMI法の応用分野として健康や疾病に関する生体の代謝産物(メタボライト)、食品や農林水産物の成分等の網羅的解析を行うNMRメタボロミクスの研究も展開している。高磁場NMRを用いたメタボロミクス解析に加え、技術革新が目覚ましい卓上NMR装置の生体系・メタボロミクス分野への応用技術の開発にも取り組んでいる。とトの健康の維持への重要性が指摘される腸内細皮が高端を重動したマルチオミクス解析等、データーサイエンスを駆使した研究展開も進めている。さらに、高分子にナノ粒子を混合した複合材料としてゴム、ゲル、樹脂素材、接着剤などの様々な商品・材料として利用されている。カチナノコンボジット(PNC)を対象として、高分子とナノ粒子のナノレベルの相互作用をダイナミクス(働きやすさ)の観点から測定し、引張強度や伸び率などのマクロな物性との関係性に関する研究も行っている。PNCの時分割x線回折画像からダイナミクスを測定する手法(Diffracted X-ray Blinking (DXB))の開発・応用を進めている。https://altair.sci.hokudai.ac.jp/g5/

ソフトマター専攻 分野等	担	当教員	研 究 內 容
ソフトマター 生体物理学	教 授	芳賀 永	細胞集団の協調的な運動、3次元形態形成、高次組織構築といった細胞から組織レベルの生命現象に対して、ソフトマター系の培養基質(コラーゲンゲル、マトリゲルなど)を用いることで生体内に近い環境を培養系で再現し、分子細胞生物学およびメカノバイオロジーの両面からメカニズムの解明を目指す。さらに、細胞外基質の硬さを定量的に変化させることで、基質の硬化が誘引するがん細胞の悪性化のメカニズムに迫る。得られた結果から再生医療およびがんの治療法開発への応用展開を目指す。https://altair.sci.hokudai.ac.jp/g3/
	教 授准教授	中垣 俊之 西上 幸範	柔らかくて大変形する物質を扱うソフトマター物理学は、生命科学においても有用なソールである。細胞や組織、個体の運動・変形・成長は、力学の視点からの理解が不可欠になりつつある。このような考えに立ち、種々生命システムにおける機能的挙動の発現機構を調べている。具体的な研究項目は以下の通りである。(1)粘菌、アメーバや絨毛虫などの原生生物の動物行動学、(2)アメーバ運動と絨毛運動の制御に関する細胞生物物理学的研究、(3)収縮性タンパク質の集団挙動における力学・レオロジー解析、(4)線虫の行動学とバイオメカニクス、(5)カタツムリやミミズなどにみられる蠕動的遺行運動の力学機構、(6)草本樹木や骨等の生体構造物の力学的機能性の研究、(7)動物の発生過程における力学モデル、(8)生体システムの循環系輸送ネットワークの研究(9)ジオラマ行動力学の研究https://pel.es.hokudai.ac.jp/
ソフトマター 医科学	准教授	津田真寿美	ソフトマター(高分子合成ハイドロゲル)を医療応用する上で必要な基礎・臨床医学,再生医療の知識を習得すると共に,生体内環境を模倣したソフトマター上での細胞動態。および生体内での反応性を解析することで,疾患の理解を深め,人工軟骨,癌治療,再生医療などへの医療応用を目指す。最終的に,ソフトマター(バイオマテリアル)と医学を融合させ,高度先進医療および高齢化社会に向けて,広く医学・医療の発展に貢献することを目指す。http://patho2.med.hokudai.ac.jp
	准教授	小野寺智洋	高い生理活性を持ち、未分化細胞の足場となるようなソフトマターマテリアルを開発し、運動器疾患分野における臨床応用を目指す。臨床応用への橋渡しを担う動物実験・臨床研究を実行し、得られた結果を元にマテリアルの実用化を行う。http://www.hokudaiseikei.jp/
ソフトマター機能学 (連携分野・国立研 究開発法人物質・材 料研究機構)	客員教授 客員准教授	中西 尚志 上木 岳士	低分子 π 共役ユニットやイオン液体、プロック共重合体を巧みに分子設計することで、新奇な光・電子機能性「液体」や自律変形する柔らかな「ゲル」素材などを創成する。これら新奇ソフトマターの物性・構造・機能解析と共に、同ソフトマターを基材にソフトエレクトロニクス、医療応用などに適応可能な高性能のエネルギー変換・刺激応答素子(具体例:センサ、アクチュエータ、細胞足場材料)の開発を行う。https://life.sci.hokudai.ac.jp/sm/lab/functional-soft-matterhttps://www.nims.go.jp/funct_mol_g/https://life.sci.hokudai.ac.jp/sm/staff/ueki-takeshi

※教員の構成は変わる可能性があるので、最新の情報については生命科学院ホームページ等で確認してください。